BRANDSCHUTZ – FACH­IN­FOR­MA­TIO­NEN FÜR PROFIS

Artikel

Brandschutz für stationäre Lithium-Ionen-Batterien

Lithium-Ionen-Batterien bieten eine hohe Energiedichte auf kleinem Raum und kommen in immer mehr Gebäuden zum Einsatz. Aus guten Gründen arbeiten sie deshalb in stationären elektrischen Energiespeichern, wie sie im Zuge der Energiewende in immer mehr Gebäuden und Infrastrukturen zum Einsatz kommen. Doch bringen diese positiven Eigenschaften auch charakteristische Brandrisiken mit sich. Ein vom VdS anerkanntes anwendungsspezifisches Schutzkonzept für stationäre Lithium-Ionen-Batterie-Energiespeichersysteme ist eine Möglichkeit, die Herausforderung zu begrenzen.

Jede Lithium-Ionen-Batteriezelle besteht aus zwei Elektroden, der negativen Anode und der positiven Kathode. Sie sind durch einen Separator getrennt. Ein weiterer wichtiger Bestandteil ist das ionenleitende Elektrolyt. Allerdings birgt dieses erfolgreiche und i.d.R. auch sichere Funktionsprinzip einige bauartbedingte Risiken. So erzeugen die Batteriezellen eine große Menge chemischer Energie auf kleinem Raum und haben einen geringen Abstand zwischen den Elektroden (Separatorschicht typisch ≈ 30 μm). Gleichzeitig sind die eingesetzten Elektrolyten typischerweise brennbar bzw. leicht entzündlich. Ein Batteriemanagementsystem (BMS) übernimmt deshalb neben der Steuerung sowie Überwachung des Ladezustands auf Zellen- und Systemebene auch das Temperaturmanagement beim Laden und Entladen. So soll sichergestellt werden, dass die Zelle im definierten sicheren Betriebsbereich gehalten wird.

Thermal Runaway als Gefahrenszenario

Wird der sichere Temperaturbereich überschritten, kann es zu einem sog. Thermal Runaway kommen, was im deutschen Sprachbereich auch als thermisches Durchgehen bezeichnet wird. Bei einem Runaway wird in der Batterie gespeicherte Energie schlagartig freigesetzt, und die Temperatur steigt innerhalb von Millisekunden auf mehrere 100 °C an. Das Elektrolyt entzündet sich bzw. das Elektrolytgas explodiert. Im Zuge der Entwicklung eines Thermal Runaway verdampft das Elektrolyt mit ansteigender Temperatur sukzessive. Dadurch baut sich der Innendruck in der Zelle immer weiter auf, bis der Elektrolytdampf entweder über ein Überdruckventil oder durch das Bersten der Hülle freigesetzt wird. Ohne Gegenmaßnahmen kann dabei ein explosives Gas-Luft-Gemisch entstehen. Eine Zündquelle reicht dann aus, um eine explosionsartige Verbrennung herbeizuführen. Zudem kann sich ein Thermal Runaway in einem Batteriesystem von Zelle zu Zelle ausbreiten und so zu einem Großbrand führen.

Eine Thermal-Runaway-Ausbreitung vermeiden

Wie Versuche im Brandlabor an Lithium-Ionen-Batterien unterschiedlichster Zellchemien gezeigt haben, kündigt sich ein Thermal Runaway schon vor dem eigentlichen thermischen Durchgehen an. Ein zuverlässiger Indikator ist das ausgasende Elektrolyt. Sobald also ein Elektrolytgas auftritt, ist mit einem Thermal Runaway zu rechnen. Es bleibt dann aber noch genügend Zeit, um automatisch geeignete Gegen- bzw. Löschmaßnahmen auszulösen. Das heißt zum einen: Löschmittel in ausreichender Konzentration in den Batterieraum einzubringen, bevor der Separator der ersten Batteriezelle ausfällt, zum anderen über das Batteriemanagementsystem die Abschaltungen vorzunehmen, die die Entwicklung eines Runaways durch Überladung oder Überlast möglicherweise noch stoppen können. Die schnelle Flutung des Batterieraums mit dem Löschmittel verhindert, dass große Mengen an explosivem Elektrolyt-Sauerstoff-Gemisch entstehen und dass die Ausprägung eines ersten Thermal Runaway verringert sowie das Übergreifen auf benachbarte Batteriezellen gehemmt wird. Sekundärbrände und – durch eine langanhaltende Inertisierung – auch Rückzündungen sind ausgeschlossen.

Fazit

Lithium-Ionen-Batterien bergen charakteristische Brandrisiken. Ein anwendungsspezifisches Schutzkonzept kombiniert frühestmögliche Branderkennung mit leistungsfähigen Ansaugrauchmeldern und Inertgaslöschanlagen.
Eine sehr frühe Flutung mit dem Löschmittel verhindert die Bildung großer Mengen explosiver Elektrolyt-Sauerstoff-Gemische, reduziert die Ausprägung eines ersten Thermal Runaway, hemmt das Übergreifen solcher Runaways auf andere Batterien und vermeidet Sekundärbrände sowie Rückzündungen. Mithilfe eines solchen Schutzkonzepts, sind stationäre Lithium-Ionen-Batteriespeichersysteme ein beherrschbares Risiko.

Quelle (35)

Zurück